python--迭代器

当前位置:首页众鑫国际官方APP >

众鑫国际官方APP

python--迭代器

时间:2019-11-30本站浏览次数:225

       

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

  一类是集合数据类型,如listtupledictsetstr等;

  一类是generator,包括生成器和带yield的generator function。

  这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

  可以使用isinstance()判断一个对象是否是Iterable对象

迭代器:可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator,生成器只是迭代器的一部分。  迭代器>生成器

>>> from collections import Iterable>>> isinstance([], Iterable)True>>> isinstance({}, Iterable)True>>> isinstance("abc", Iterable)True>>> isinstance((x for x in range(10)), Iterable)True>>> isinstance(100, Iterable)False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator>>> isinstance((x for x in range(10)), Iterator)True>>> isinstance([], Iterator)False>>> isinstance({}, Iterator)False>>> isinstance("abc", Iterator)False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)True>>> isinstance(iter("abc"), Iterator)True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]: pass

实际上完全等价于:

# 首先获得Iterator对象:it = iter([1, 2, 3, 4, 5])# 循环:while True: try: # 获得下一个值: x = next(it) except StopIteration: # 遇到StopIteration就退出循环 break

 




公司地址:河北省石家庄市灵寿县慈峪镇凤凰楼村44号
联系人:郭明 15811176832
周高标 13974836124
电话:18569099908 传真:fl44gb6uk0@sina.com
邮箱:zb8b5@162.com

粤公网安备 44030702001579号

众鑫集团最新网址@